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Dynamic decision models are frameworks for nmodel-
ing and solving decision problems that take into
explicit account the effects of time. These formalisms
are based on structural and semantical extensions of
conventional decision models, e.g., decision trees and
influence diagrams, with the mathematical definitions
of finite-state semi-Markov processes. This paper
identifies the common theoretical basis ofexisting dy-
namic decision modeling formalisms, and compares
and contrasts their applicability and efficiency. It also
argues that a subclass ofsuch dynamic decision prob-
lems can be formulated and solved nmore effectively
with non-graphical techniques. Some insights gained
from this exercise on automating the dynamic decision
making process are summarized.

INTRODUCTION

Decision analysis is a normative framework for deci-
sion making under uncertainty. By systematically
formulating, evaluating, and analyzing a graphical de-
cision model, the decision analytic approach helps in
both gaining better insights into, as well as deriving a
set of optimal decisions for the problem at hand. In re-
cent years, some new decision modeling formalisms
have been devised to deal with dynamic or sequential
decision problems, i.e., decision problems that take
into explicit account the effects of time. For instance,
a common clinical decision is to choose a course of
treatments with efficacies that may vary over time.
These new formalisms, e.g., dynamic influence dia-
grams [12], Markov cycle trees [1] [8], and stochastic
trees [6], are based on structural and semantical exten-
sions of conventional decision models such as
influence diagrams and decision trees, with the mathe-
matical definitions of semi-Markov processes.

The different modeling formalisms have different pros
and cons. There are a lot of controversies and uncer-
tainties about the "best" framework available. Judging
from the literature, researchers adopting one frame-
work are usually not familiar with the capabilities and
limitations of the others. At times there are attempts at
pushing a particular framework to accommodate fea-

tures that are hard to be incorporated; cumbersome
extensions and restrictive assumptions might result.

This paper attempts to unify the existing dynamic de-
cision modeling formalisms by identifying their
common theoretical basis, and to distinguish them by
classifying the decision problems they can effectively
handle. A common basis for comparing the formal-
isms results from this exercise. This could help
researchers decide if a particular framework is suitable
for the problem at hand, if reasonable extensions can
be made of the framework, and if necessary assump-
tions can be made of the problem. The quality of the
resulting models from different frameworks can then
also be compared on a consistent set of metrics.

AN EXAMPLE DECISION PROBLEM

To illustrate the different formalisms, we examine a
typical dynamic decision problem in the management
of chronic ischemic heart disease (CIHD). The prob-
lem, adapted and simplified from [14], is to determine
the relative efficacies of different treatments for chron-
ic stable angina (chest pain), the major manifestation
of CIHD. The altematives considered are medical
treatments, percutaneous transluminal angioplasty
(PTCA), and coronary artery bypass graft (CABG).
The major characteristics of this problem are as fol-
lows:

Progressive symptoms: All symptoms are assumed to
be progressive. If the angina worsens after a treatment,
the treatment is likely to have failed, and subsequent
actions must be considered.

Recurrent prognosis: Restenosis, i.e., renewed oc-
clusion of the coronary arteries, is possible even after
successful treatment.

Sequential decisions: Due to the possibilities of inef-
fective treatments and restenosis, a sequence of
decisions must be made.

Time-dependent effilcacies and complications: The
efficacies of the treatments in lowering mortality de-
cline as time progresses, partly due to the deteriorating
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status of the patient. Similarly, the complications ofthe
treatments worsen as time progresses. A major compli-
cation for PTCA is perioperative myocardial
infarction (MI), or heart attack, which would render an
emergency CABG necessary.

Value function: The effectiveness of the different
treatments is evaluated with respect to a value func-
tion, e.g., quality-adjusted life expectancy (QALE).

DYNAMIC DECISION MODELING

A dynamic decision model is based on a graphical
modeling language for explicitly displaying the rele-
vant variables in a dynamic decision problem. In
general, such a model consists of the following six
components, the first five of which constitute a con-
ventional decision model:

* A set of decision nodes listing the alternative actions
that the decision maker can take, for instance, the
choices of medical therapy, PTCA, and CABG;
* A set of chance nodes outlining the possible out-
comes or happenings that the decision maker has no
control over, for example, the physical status of the pa-
tient, the prognostic outcomes of PTCA, etc.;
* A single or a set of valuefinctions capturing the de-
sirability, in terms of factors like cost, life-expectancy,
etc., of each outcome or action;
* A set of probabilistic dependencies depicting how
the outcomes of each chance node depend on other
outcomes or actions;
* A set of informational dependencies indicating the
information available when the decision maker makes
a decision; and
* An underlying semi-Markov process governing the
evolution in time for the above five components.

We shall now briefly examine three simplified dynam-
ic decision models for the example problem presented
earlier. Figure 1 depicts the state transition diagram of
the embedded Markov chain for this problem. The
states in the chain represent the possible physical con-
ditions or health outcomes of a patient, given any
particular treatment k E Q = {MedRx, PTCA, CABG).
For ease of analysis, assume that each state variable
x E X = ("Well", "Restenosis", "MI", "MI+Restenos-
is", "Dead") in the Markov chain is a function of a set
of binary health outcome variables
O = {Status, MI, Restonosis } , e.g., "Well":=
(Status = alive, MI = absent, Restenosis = absent),
"Mr:= (Status = alive, MI = present, Restenosis = ab-
sent), "Dead":= (Status = dead, MI = present or
absent, Restenosis = pre-sent or absent), etc.

The links in Figure 1 represent possible transitions

from one state to another; given any treatment, a tran-
sition probability is usually associated with each link.
The time taken for a transition to take place can be
measured in discrete or continuous scale. The formal
definition of a Markov chain will be presented later in
this paper.

Figure 1: An embedded Makov chain for the example.

In the illustrations of dynamic decision models to fol-
low, a rectangle represents a decision node and an oval
a chance node, unless otherwise specified.

Dynamic Influence Diagranms
Figure 2 shows a dynamic influence diagram for the
example problem. The shaded ovals represent the val-
ue nodes. The number at the end ofeach node indicates
the time period in which the decision/event/value is
considered. Each time period corresponds to one tran-
sition cycle time in the underlying discrete-time
Markov chain; the cycle time may be in any unit and is
usually constant within the model. The arcs leading
into the chance and value nodes indicate probabilistic
dependencies, and the arcs leading into the decision
nodes indicate informational dependencies. Embed-
ded in each chance node or value node is a list of the
possible values or outcomes of the node, e.g., "alive"
or "dead" for Status, and a table of probabilities con-
ditional on its probabilistic predecessors; embedded in
each decision node is a list of the alternate treatments
and a list of its informational predecessors.

Figure 2: A dynamic influence diagram.

Markov Cycle Trees
Figure 3 depicts a Markov cycle tree [8] for the exam-
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ple problem*. The convention for the notation is such
that there is one Markov cycle tree modeling the prog-
nosis of each alternate treatment or strategy in the
conventional decision tree, represented by the single
decision node in the figure. All the possible combina-
tions of events that could happen between any two
transitions of the underlying discrete-time Markov
chain, are represented in between the root and the
leaves of a cycle tree. The transition cycle time is again
constant in a model. The arcs joining the nodes indi-
cate probabilistic dependencies among the nodes.
Probabilistic independencies, however, are not explic-
itly shown as in a dynamic influence diagram.

Figure 3: A Markov cycle tree.The symbol [I
denotes the root of the cycle tree, and each kstate>1
a leaf, i.e., the state to start in the next cycle. The label
DieASR means die of all other, including age- and
sex-related, i.e., natural, causes.

Stochastic Trees
Figure 4 depicts a stochastic tree [6] for the example
problem. A stochastic tree, like the Markov cycle tree,
is used together with a conventional decision tree to
model the prognosis of a decision. Unlike the other
two models, however, state transitions in a stochastic
tree can occur any time according to some exponential
distributions with specific rates, ie., it models a con-
tinuous-time Markov chain. With reference to the
embedded Markov chain in Figure 1, only transitions
to immediate states are depicted in the stochastic tree.
Transition rates, instead of transition probabilities, can
be used directly for specifying the probabilistic char-
acteristics of the tree.

The diagram does not depict sequential decisions. The
explanation will be presented later.
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Figure 4: A stochastic tree. Parameters on the arcs
indicate transition rates among the relevant states.

SEMI-MARKOV DECISION PROCESSES

The structure and semantics of the models described
so far can be more clearly understood in terms of the
theoretical basis of dynamic decision modeling: semi-
Markov decision processes. Formally, a semi-Markov
decision process is characterized by the following
components [4] [7]:
* A set of n alternate decisions n = I 1, 2, ..., n}
and
* A semi-Markov reward process denoted by a set of
random variables {X(t);t e T}, where
X (t) E { 0, 1, 2, ... } is the state of the process at time
t, and T is the time-index set, with:

1. an embedded Markov chain denoted by a set of ran-
dom variables {XM;mO0}; such that
Xm = X (Tm), where T1< T2 < T3 < ... are the
random variables denoting the successive epochs
(i.e., instants of time) at which the process makes
transitions;

2. n sets of transition probabilities
{P(k) ; , j> 0, < k < n} among the states of
the embedded chain such that for any given deci-
sion k E Q, and states i, j:

p(k) = p {XM +1 =I Xm =i }

= P{X(Tm+ 1) =1i X(Tm) = i }

which also satisfies the Markovian property:

p(k) = p {XMr+1 = I Xm i }

1i~~ ~~~~~r-=P {Xm + I = ji X. i, Xm _ =h,
3. n sets of holding times

{,(ik)i>O,j 10,I <k<n} among the states of
the embedded chain, which are random numbers
with corresponding distributions
{F k) (t); i 2 0, j 0, 1 < k < n}, such that for any
given decision k E Q, and states ij:

F(k)(t) - P{Tm+ -T. tI Xm = i, Xm+ I j }
1J
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and
4. n sets of rewards/values

{r(k) (t) ;i >O, 1 < k < n } associated with the
states of the embedded chain such that for any
given decision k e Q, rik) (t) is the expected
cumulative value achievable in state i of the chain
at time t.

A dynamic decision problem can be expressed as the
dynamic progamming equation, or Bellman optimali-
ty equation, of a semi-Markov decision process. For
instance, the equation corresponding to the set of dis-
crete time problems that can be captured by the
dynamic decision models described earlier is:

V,i (t) = maxk {r,) (t) + IP,j ) V,* (t+ 1) d 1

t2O;i,j.O;1 <kin
The solution to such an equation is an optimal policy,
i.e., a sequence of decisions over time t (which could
be one single decision repeated indefinitely) that max-
imizes V* (0) , the optimal expected value or reward
for a "start" state s, e.g., the "well" state for the exam-
ple problem, at time 0.

In our example, the set of decisions is
Q = {MedRx, PTCA, CABG}. The semi-Markov
reward process, with time index set
T c {0, 1, 2, ... } for the dynamic influence diagram
and the Markov cycle tree, and T c [0, +00] for the
stochastic tree, is defined by: 1) the embedded Markov
chain with state-space X = ("Well", "Restenosis",
"Mr', "MI+Restenosis", "Dead") as illustrated in Fig-
ure 1; 2) three sets of transition probabilities among
the states in X, corresponding to the decisions in LI; 3)
constant holding times with distributions
F,k)(t) = 1 (t- 1), where 1(t- 1) is a step func-
tion at time t = 1 (in any unit) for the dynamic
influence diagram and the Markov cycle tree, and ex-
ponential holding times with distributions
F,(k) (t) = 1 - e 1 , where gi are the state-dependent
transition rates for the stochastic tree; and 4) three sets
of rewards, corresponding to the amount ofQALE ex-
pected in each state in X with respect to the decisions
in Q.

CHARACTERISTICS ANALYSIS

While sharing the general theoretical basis, the three
dynamic decision modeling formalisms capture and
reflect the underlying mathematical information in dif-
ferent ways; different assumptions are also adopted.

Tinm Indices and Horizons
The time index set T is discrete in dynamic influence

diagrams and Markov cycle trees, and continuous in
stochastic trees. The constant and exponential holding
times captured in these models are very strong as-
sumptions; they do not exploit the expressiveness of
the flexible holding times in semi-Markov processes.
For instance, facts like "after a PTrCA, if the patient is
well, it is three times more likely that he will develop
restenosis in the next 6 months than later" cannot be
easily captured in the existing frameworks; extensions
such as "tolls" and additional "time slices" have to be
incorporated.

The horizon of a dynamic decision problem can be fi-
nite or infinite. In finite horizon problems, the optimal
policy is determined over a finite number of time peri-
ods N, e.g., deciding on the best course of actions for
65 year-old patients in the 5 years immediately follow-
ing a PTCA. In infinite horizon problems, the decision
endpoints may be at an arbitrarily distant future, e.g.,-
when a large cohort of patients die off, using a small
cycle time unit. Since all the decisions and events have
to be explicitly displayed in dynamic influence dia-
grams, they are feasible only for modeling finite
horizon problems. Markov cycle trees can model both
finite and infinite horizon problems. In stochastic trees,
state transitions can occur at any time corresponding to
some exponential distributions, hence they are valid
only for infinite horizon problems.

Representational Explicitness
One major advantage of dynamic decision modeling is
indeed the graphical modeling languages involved. Al-
though different types of decision models explicitly
display different types of information, any graphical
tool would provide tremendous insights into the deci-
sion context for the decision maker.

Specifically, while the actual values of the chance
events and decisions are concealed in the nodes, dy-
namic influence diagrams explicitly display the
sequential nature of the decisions and probabilistic in-
dependencies among the variables. Independent health
outcome variables can be dealt with separately. For in-
stance, the dynamic influence diagram in Figure 2
explicitly shows that the health outcome variables MI
and Restenosis are conditionally independent, and
hence unnecessary to be combined into a single state
variable as in the embedded Markov chain in Figure 1.
The structure of the value function can also be explic-
itly displayed in these models.

As in conventional decision trees, the Markov cycle
tree in Figure 3 explicitly displays the possible conse-
quences of each state variable, which are implicitly
captured in the transition arrows of the embedded
Markov chain.TMe sequential nature of the decisions,
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however, cannot be captured in a straightforward man-
ner. In fact, Figure 3 does not include sequential
decisions, i.e., it does not consider how backup and re-
peated treatments may affect the patient's prognosis. It
is possible to incorporate such information, but the re-
sulting Markov cycle tree would be too complicated to
be displayed in the limited space here. The combina-
tions of all subsequent actions and their possible
consequences in one cycle would have to be modeled
as separate states in the cycle tree; these subsequent
decisions cannot be modeled as decision nodes in this
framework.

The stochastic trees are simply the continuous analog
of the Markov cycle trees, although only the immedi-
ately possible state transitions are depicted. The
difficulties in incorporating sequential decisions carry
over.

Strategic Constraints
In our example problem, all the alternate decisions are
assumed to be applicable at every stage; the decisions
are assumed to be independent. As mentioned earlier,
only dynamic influence diagrams can explicitly and
easily capture this sequential nature of decisions. In
the tree-based formalisms, the same decision or a very
limited, fixed sequence of decisions is assumed at ev-
ery decision point, i.e., they can only model problems
that compare the effectiveness of different decisions,
but not those that determine an optimal sequence of
decisions.

Moreover, the independent decisions assumption may
not be true in general. For example, the efficacy of
PTCA might depend on the number and nature of the
procedures that the patient had gone through before; a
patient could only go through threeCABG procedures;
or a CABG procedure could only be followed by a
PTCA or medical therapy.

Such strategic constraints can be explicitly represented
in a dynamic influence diagram, but again cannot be
easily incorporated into either a Markov cycle tree or
a stochastic tree, unless one is willing to expand the
tree structures fully before evaluation. Even in a dy-
namic influence diagram, all the constraints have to be
anticipated at model building time, and hence fully
displayed before evaluation.

Discount Factors
The values achievable in each state of the embedded
Markov chain may be discounted over time. For in-
stance, life-expectancy generally lowers with age. The
discount factors in turn might be constant or time-de-
pendent. Since all three modeling formalisms
described so far involve explicit enumeration of the

state transitions, incorporating discounting is straight-
forward.

Solution Techniques
Dynamic influence diagrams: The decision problem
is solved by graph reduction. The chance nodes are re-
moved by conditional expectations, the decision nodes
by value maximization, and the non-terminal value
nodes by merging into other value nodes, and ultimate-
ly into the terminal value node. The only well
established algorithm for solving dynamic influence
diagrams is due to Tatman and Shachter [12]; recent
efforts have tried to reduce these models into Bayesian
or probabilistic networks to take advantage of the
much larger collection of evaluation algorithms [11],
but all these algorithms are still NP-hard [3] with re-
spect to the size of the models.

Markov cycle trees: The decision problem is solved
by evaluating the Markov cycle trees at the end of the
alternate treatments and compare their relative values.
Evaluation of a Markov cycle tree is by simply rolling
forward with an initial value assignment and probabil-
ity distribution of the state variables at the root. The
next cycle starts with a new distribution at the root of
the cycle tree. This corresponds to a cohort analysis
[1]. The expected values are accumulated for each
state until the process converges, or ends when the
"dead" state reaches probability 1; this is an infinite
horizon problem. The evaluation may take an arbitrari-
ly long time to terminate, or may not terminate at all.

Stochastic trees: Evaluation of the stochastic tree is
by rolling back. The expected values of each state is
calculated by value expectation in the subtree with the
state in concerned as the root, along the branches from
the leaves. If cycles appear in the state transition dia-
gram of the embedded Markov chain, the evaluation
must be done across several cycles until the numbers
converge. Due to the decomposability of the exponen-
tial transition time functions, fewer calculations are
required as compared to Markov cycle tree evaluation,
and the evaluation is finitely terminating.

All the dynamic decision evaluation algorithms are
based on the value iteration method of the dynamic
programming or Bellman optimality equation of semi-
Markov decision processes, the discrete time version
ofwhich is shown in EQ 1. This method is based on the
notion ofbackward induction. All possible state evolu-
tions over time have to be explicitly enumerated in the
models, and hence considered by the evaluation algo-
rithms.

Even then, the power of dynamic programming, i.e.,
considering only the optimal decisions obtained so far
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from the future by backward induction, is actually not
fully exploited in dynamic decision modeling. Al-
though dynamic influence diagrams correspond to
exact formulations of the dynamic programming equa-
tion [12], all the tree-based formalisms do not make
use of the suboptimality structure. In these latter
frameworks, decision nodes are not part of the model
structures, hence all possible decision consequences
have to be simulated during evaluation.

DISCUSSION

Regardless of the particular framework employed, dy-
namic decision modeling has proven to be quite
formidable in many real applications, even with the
help of computers. The computational complexity
arises from the value iteration technique of the under-
lying dynamic programming formulations; all the
relevant events over time must also be explicitly de-
picted in most cases. In order to circumvent such
complexity, either strong strategic constraints that lim-
it the number of decision choices at each decision
stage are imposed, or approximate algorithms for eval-
uating partial models are employed [10] [5]. While
these latter myopic strategies could possibly guide the
evolution of the models more accurately, they do not
guarantee global optimality of the solutions. In fact, no
fornal characterization of such strategies, in tenns of
the decision factors involved and the corresponding
solutions, have been attempted.

Research in stochastic control and Markovian decision
problems has resulted in a number of solution methods
for semi-Markov decision processes [2] [9]. The appli-
cability and efficiency of the different methods,
however, depend on specific characteristics of the
problems under consideration. For problems with fi-
nite decision and state spaces, certain discount factors,
and stationary policies that involve decisions that are
independent of time, methods such as policy iteration,
adaptive aggregation, and linear programming [2]
may be more efficient than value iteration. We believe,
although we will not elaborate here, that the assump-
tions required can be satisfied by a substantial subclass
of challenging clinical decision problems

Therefore, it seems that much complexity in dynamic
decision modeling can be avoided by dealing directly
with its underlying theoretical framework as a semi-
Markov decision process. In particular, many prob-
lems that the models aim to solve can be solved by
more efficient techniques. This conclusion provides
some interesting insights into integrating graphical
and numerical approaches to automatically solve dy-
namic decision problems in medicine.

CONCLUSION

Dynamic decision making is a knowledge- and labor-
intensive task. Automating the decision making pro-
cess has recently become an important area of research
[131. One major controversial issue in automated dy-
namic decision modeling research is the choice of the
models employed, since different models adopt differ-
ent assumptions, explicitly display different types of
information, and hence would ease different types of
sensitivity analysis to different extents. On the other
hand, most direct solution techniques for semi-Markov
decision processes do not take advantage of the graph-
ical insights provided by the decision analytic
approach.

Since all dynamic decision modeling formalisms are
based on the same theoretical framework of semi-
Markov decision processes, the same types of infor-
mation are actually required to formulate a decision
problem in both approaches. Only after the problem
formulation process is completed, e.g., all the decision
alternatives, state variables, transition probabilities,
etc., have been identified, that the information appar-
ent or easily accessible to the decision maker appears
different. If all the information leading to the problem
formulation can be traced somehow, the two approach-
es should not differ.

In conclusion, we believe that a feasible approach to
automated dynamic decision making is to formulate
the problems directly as semi-Markov decision pro-
cesses. With a well-designed interface, the relevant
information for problem formulation could be input
and accessed in whatever convenient forms, graphical
or otherwise. Only after the problem has been formally
and completely formulated, a particular format is cho-
sen, depending on the problem nature, to solve for the
optimal policy. Sensitivity analysis can be conducted
by accessing the recorded information, and perhaps
also by employing a different solution technique. This
hypothesis will be tested in a future project.
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